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APPLICATION OF THE PSEUDOSPECTRAL METHOD TO 
THERMOHYDRODYNAMIC LUBRICATION 

M. R. SCHUMACK 
hiversify of Detroit Mercy, PO Box 19900, Detroit, MI 48219, U.S.A. 

SUMMARY 
The pseudospectral method is used for the first time to solve the thermohydrodynamic lubrication equations for a 
slider bearing. The orthogonal polynomials used in the series expansions are Lagrangian interpolants derived 
from a Legendre basis. Exponential convergence to exact solutions is demonstrated and favourable comparisons 
with previous work are made. 
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1. INTRODUCTION 

The thermohydrodynamic (THD) lubrication equations have been solved by numerous investigators 
using mainly the finite difference method (see e.g. Reference 1) and to a lesser extent the finite 
element method (see e.g. Reference 2; see also Khonsari’s review for a more thorough discussion of 
numerical techniques for the THD equations3). Both these methods, as traditionally applied, are 
characterized by algebraic convergence to the exact solution as the number of grid points is increased. 
Pseudospectral methods, on the other hand, are typically characterized by exponential convergence as 
the number of grid (or collocation) points is increased. Another advantage of the pseudospectral 
method is that the solution is in the form of a functional relationship between calculated values and 
independent variable-s opposed to values only at discrete grid po in tmak ing  postprocessing 
particularly convenient. Until now, no one has applied the pseudospectral technique to the solution of 
thermohydrodynamic lubrication problems. The formulation presented here will serve as a foundation 
for future efforts to apply the pseudospectral method to lubrication problems where the advantages of 
spectral methods are particularly beneficial; namely, in the solution of thermal elastohydrodynamic 
lubrication problems, where high resolution is required. 

Description, analysis and references to applications of the pseudospectral method are discussed at 
length in the monograph by Boyd! Examples of fluid dynamic problems that have been solved with 
this method range fiom Taylor-Couette flow,5 driven cavity flow,6,? to flow past an aerofoil; along 
with a host of other published solutions not referenced here. Although a pseudospectral code is 
generally more difficult to implement initially, once the necessary subroutines for calculating basis 
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functions and their derivatives at grid points have been written, the algorithm is relatively easily 
modified for other problems. For a given accuracy, pseudospectral codes are potentially much more 
efficient than other codes because of the smaller linear systems to be solved. 

Excellent discussions and summaries of previous research in THD lubrication have been delivered 
elsewhere and therefore will not be repeated here. Khonsari? Szeri' and Pinkus" in particular 
provide background to THD analysis. 

In this paper the pseudospectral method is formulated and applied to the steady thermohy- 
drodynamic lubrication equations for a plane slider bearing. Section 2 describes the geometry and 
governing equations, Section 3 details the formulation of the numerical method, Section 4 presents 
results and comparisons with previous solutions and Section 5 concludes the work. 

2. GOVERNING EQUATIONS 

The geometry and co-ordinate system for a slider bearing analysed in this paper are shown in Figure 
1. The bearing half-width is L; since the pressure distribution is symmetric about the bearing 
midplane, the co-ordinate origin is placed at the midplane so that 0 < z < L. Note that the dimensions 
are not shown to scale; the length and width of bearings are typically of the order of 1000 times larger 
than the distance between surfaces. 

Momentum, continuity and pressure equations 

The basic assumptions for lubrication flows are as follows. 

la. Pressure is invariant across the fluid film (in the y-direction). 
2a. Inertia forces are negligible. 
3a. Velocity gradient in all but the cross-stream (y-) direction are negligible. 

TBi runner 

Figure 1. Geometry and co-ordinate system for slider bearing (not to scale). The z-direction is perpendicular to the plane of the 
page, with the co-ordiante origin at the bearing midplane and z = L at the bearing edge 
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In addition, the flow is assumed to be steady. The NavierStokes equations thus reduce to 

(1) 

The continuity equation is 

(3) 
X P W )  +- +-=O 

ax ay az 

and the boundary conditions are 

u = U  and v = w = O  a ty=O,  u = v = w = O  a t y = H .  (4) 

Combining equations (1H3) and applying the boundary conditions leads to the steady generalized 
Reynolds equation for pressure (see Reference 11 for mathematical details) 

where 

Energy equation 

The assumptions for the energy equation are as follows. 

1 b. Conduction terms other than across the fluid film (in the y-direction) are negligible. 
2b. Thermal conductivity and specific heat are constant. 

These assumptions, combined with assumptions l a  and 3a from above, lead to the following form 
of the energy equation." 

aT ") = a2T ( 
k - + + T  a3 u - + w -  z)  + P  [(;)'+(;)'3. (8) 

Ezzat and Rohde' showed that the calculated temperature is nearly constant in the z-direction for a 
finite slider bearing, so, to save computational effort, a form of equation (8) is used which is averaged 
over the z-direction: 
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where 
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The boundary conditions are 

The last boundary condition in equation (1 3) is that for an adiabatic upper boundary. 
Viscosity and density are related to temperature and pressure via the  relationship^""^ 

where p1 and p1 are the inlet viscosity and density respectively, c1 and y are viscosity coefficients and 
B is the lubricant thermal expansivity. 

Next the governing equations are non-dimensionalized to facilitate comparison with other 
published results and to establish a computational domain suitable for use with our choice of 
orthogonal basis functions. We non-dimensionalize the governing equations using the scales 

z t + l L  - H  
-- H = - - ,  _ -  x s + l  y r + l  - - - -  

B -  2 ' H 2 '  B- 2 B '  H2 

The new independent variables s ,  r and t are chosen in order to transform the computational domain 
to [- 1, 11 in each dlrection. This transformation allows the use of a Legendre polynomial basis in the 
pseudospectral formulation as described in the following section. Noting that r is a function of both x 
(since H is a function of x )  and y, equation ( 5 )  becomes 

# j  B~ #j azl a j  B~ ar, a j  I az2 
1 (as2 L2 at2) as as L2 at at 2 as 7 

I -+-- +--+ (17) 
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where 
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(18) 

The boundary conditions for the non-dimensional pressure are 

(22) aii 
at 

3(-1, t) = j ( l ,  t) =P(s, 1) = -(s, -1) = 0. 

The equations for ii and W become 

Once the pressure distribution has been calculated by solving equation (17), velocities must be 
calculated for use in the energy equation. Equations (23) and (24) are solved for ii and W. The 
equation for V could be obtained by solving the continuity equation for V ,  but numerically this leads to 
the physically unreasonable condition of non-zero V on the stationary member surface owing to the 
imposition of a boundary condition solely on the lower surface. The problem is alleviated by 
differentiating the continuity equation with respect to y and then solving the resulting second-order 
equation with homogeneous boundary conditions on both surfaces, similar to the procedure followed 
by Boncompaign et al? The validity of the procedure has been confirmed by comparing computed 
solutions for V with the exact solution for an infinitely wide isothermal slider bearing. For example, 
the RMS error for N = A4 = 14 on an 1111 uniform grid was 3 ~ 2 1 0 - ~  solving the continuity 
equation and 1-610-6 solving the differentiated form of the continuity equation. The resulting 
equation for the quantity j i j  is thus 

The velocity boundary conditions are 

U = l  and V = W = O  a t r = - 1 ,  i i = V = W = O  a t r = l .  (26) 
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The energy equation becomes 

where 

The Peclet number is 

i,, = 2 f l  ji[ (32+(32] dt. 

and the product of the Prandtl and Ecert numbers is 

The boundary conditions for temperature become 

The equations for viscosity and density become 

ji = exp[-E(T - 1) + 7 ~ 1 ,  (34) 

p = exp[-B(? - I)], (35) 

where 

B = P T R .  (36) E = UTR, ? = y -  PI UB 
H,2 ' 

Three performance parameters are now defined for future reference. The first is a non-dimensional 
load parameter 

W 
(37) 

which can be expressed as 
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and the second and third are non-dimensional inlet and outlet flow rates 

- Qin - Qout '' = 2Lp1 UH, ' 'Out = 2Lpl UH, ' 

I151 

(39) 

which can be expressed as 

(40) 

The final equations to be solved are equation ( 1  7) for pressure, equations (23H25)  for velocities and 
equations (27) for temperature. 

3 .  FORMULATION AND SOLUTION PROCEDURE 

The pseudospectral method proceeds by expanding the unknowns in series of orthogonal 
polynomials, substituting the expansions into the governing equations and boundary conditions, 
satisfying the governing equations at a set of collocation points and enforcing the boundary 
conditions at appropriate boundary points. The resulting system of linear equations is then solved for 
the series coefficients. For this work a series of Lagrangian interpolants constructed from Legendre 
polynomials is chosen. A Legendre basis is use because the collocation points are the same as those 
used in the Gauss-Lobatto quadrature for evaluating the integrals in the pressure equation. The 
Lagrangian interpolant formulation results in direct calculation of the grid point values for the 
unknowns, which avoids the necessity of performing Legendre transforms in the solution process. 

Velocities, pressure, temperature, viscosity and density are expanded in series of Lagrangian 
interpolants which satisfy hi(sj) = d+ l6 

The quantity LM(s) is the Mth-order Legendre polynomial and sj is thejth root of 

(1 - ?)Lh(s). 

The roots of the Legendre polynomial derivatives re not known in closed form and must be calculated 
numerically. Expressions for h,(r) and h,(t) are similar to that for h,(s), with r or t replacing s and Nor 
L replacing M. The unknowns are thus expanded as 

M N  L M N L  

iJ = C C C iJmn/hm(s)hn(r)hdt), 
m=O n=O/=O 

U = C C C fi mn/hm(s)kz(r)ht(t), 
m=On=O /=O 
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(-1 

Figure 2. Grid in computational domain. The t-direction is perpendicular to the plane of the page and -1 < t < 1 .  Here 
M = N = 1 4  

where, for example, iimnl is the x-direction velocity at collocation point s,, r,, t l .  The collocation 
points are the roots of equation (42). A sample grid in the computational domain is shown in Figure 2. 

Substitution of the expansion for pressure from equation (43) into equation (17) leads to the 
following equation at collocation point si, tk: 

where 

The first derivatives hJsi) of the Lagrangian interpolants are given by16 

0, 

M ( M +  1) 
4 

i = j # O , M ,  
% -(s;) = 

, i = j = O ,  - ds 
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d2hj 
ds2 
-(s;) = 

1153 

. 

and the second derivatives hy(si) are given by17 

-lM+'M(M + l)(si - s,) - 4(-1)M 
, i # j , i = O ,  

2LM(Sj)(Si - Sj)2 

. .  
1 = J .  

(47) 

The derivatives for I, and I, are obtained by expanding the functions in terms of Lagrangian 
interpolants and differentiating, resulting in 

To evaluate the integrals in equations (19)-(21), we employ Gauss-Lobatto quadrature. The 
quadrature points are the roots of equation (42) and the weights are1' 

n 

The integrals in equation (1 9)  thus become 

The integrals in equation (20) become 
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where 
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The values for& and$ in equation (21) are determined by solving the equations 

_-__ aJ; r + l  - -_ & 1  - - 
ar 2p' ar 4,ii ( 5 5 )  

subject to the boundary conditions fo = A  = 0 at r = -1 .  Expanding the functions in terms of 
Lagrangian interpolants gives 

and substituting into equation (55) leads to 

Applying the boundary conditions and then writing equation (57) for all j, where 2 < j < N, leads to 
a linear system of equations for the unknowns at each si, tk. 

Writing equation (4) for each interior grid point and applying the boundary conditions leads to the 
linear system of equations to be solved for the pressure coefficients. 

Equations (23x25) are one-dimensional boundary value problems for the velocities. Substitution 
of the appropriate expansions from equation (43) into equation (23) yields, for grid point si, rj ,  t k ,  

where 

Applying the boundary conditions at r = -1  and 1 and writing equation (58) for each grid point 
rj, 1 < j  < N - 1 ,  leads to a system of N - 1 equations for the N - 1 unknown velocities at a 
particular grid point si, tk. Substitution of the appropriate expansions from equation (43) into equation 
(24) yields, for grid point si, rj, tk, 

The procedure for solving for the values of W is identical to that used for ii. Substitution of the 
appropriate expansions from equation (43) into equation (25) yields, for grid point si, rj, t k ,  
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where 

The derivatives in equation (63) are discretized as 

The energy equation becomes, at grid point si, rj, 

where 

1155 

(63) 

The solution procedure begins by assuming a temperature and pressure distribution in order to 
obtain the viscosity and density fiom equations (34) and (35). These values are then used in the 
solution of the pressure equation (44). Solution of equations (58), (61) and (62) for the velocities 
occurs next. Finally the energy equation (65) is solved for a new temperature distribution. The 
process is then repeated until convergence is obtained. The sum of the normalized RMS differences 
between the values of pressure, all three velocity components and temperature at the current and 
previous iterations is used as a stopping criterion, with a value of 1 x lo-' used for all calculation 
results presented here. The number of iterations is dependent upon the problem parameters and 
boundary conditions but is typically between 10 and 15. Solution of the linear systems is performed 
using Gaussian elimination. For a discretization where the truncation is the same in all directions (i.e. 
N = M = L), the operation count is O(N6) per iteration. With N = M = L = 14 the computation 
time is 250 s per iteration on an IBM RS 6000 workstation. 
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4. RESULTS 

Although the truncations M ,  N and L need not have the same values, they are set equal to each other 
for all calculations discussed hereafter. 

The formulation was first tested by comparing with several exact solutions for the infinitely wide 
slider (see Appendix for exact solutions from Reference 19). Figure 3 shows the convergence of the 
numerical to the exact solutions for j, ii and V for a slider operating under isothermal conditions. 
Exponential convergence is evident in the plot. The energy equation formulation was also tested by 
comparing with exact solutions to the energy equation for flow between parallel plates for both 
constant temperature and adiabatic boundaries (see Appendix). Again agreement was excellent. 

Comparisons with results of Hahn and Kettleb~rough,'~ who solved the thermohydrodynamic 
problem for an infinitely wide slider, are shown in Table I. Note that Hahn and Kettleborough 
incorrectly incorporated the compressibility term in the energy equation (the last term on the left side 
of the equals sign in equation (27)) as they discussed in an appendix to their paper, so their results for 
case 5 are slightly in error. Comparisons were also made with results of Zienkiewicz for parallel 
sliders2' and inclined sliders21 and of Rodkiewicz el ~ 1 . ~ ~  and agreement was excellent. 

Comparison is made next with analytical solutions to the isothermal finite slider problem. In Table 
I1 the present numerical results and results of Szeri and Powers23 for various values of I?, and B / L  are 
presented. Agreement is within three significant figures. 

As mentioned by Boyd: another check for convergence is to evaluate the magnitude of the spectral 
coefficients associated with the highest-frequency components in the solution. The solution error will 
be roughly the same order of magnitude as these highest-order coefficients. For the present 
formulation the solution can be expanded using a Legendre basis, employing the Legendre transform 
as described by Canuto et al. '' and Schumack. l7 Figures 4 and 5 show how the Legendre coefficients 
for pressure and temperature, j,,,,, and p,,,,,, decrease with increasing indices for the case described in 
the caption. 
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6 e 10 12 14 1 6  18 20 O :* 
M ( - N )  

Figure 3. Convergence of pressure and velocity- solutions to exact solutions for infinitely wide isothermal slider with 
H , = 2 : 0 , j ;  + , i i ; x , G  
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Table I. Comparison of non-dimensional pressure solutions of Hahn and Kettleboro~gh!~ with present soiFtions 
for infinitely wideslider. The cases ccrrespond to those in Refejence 13: case 2, CC = 0,J = 0.036,F = 0,1= 0; 
case 3, CC = 2.5, p = 01036, j7 = 0,1 = 0; case 4, CC = 2.5, p = 0.036,y = 2.0164.1 = 0; case 5, CC = 2.5, 

= 0.036, = 2.0164,1 # 0. Truncation for case 2 was M = N = L = 13; truncation for remaining 
cases was M =  N = L = 15 

x = 0.2 x = 0.4 x = 0.6 x = 0.8 

Case Reference 13 Present Reference 13 Present Reference 13 Present Reference 13 Present 

2 0.102 0.10196 0.193 0.19336 0.252 0.25235 0.229 0.22893 
3 0.07 1 0.07066 0.115 0.11536 0.132 0.13263 0.107 0.10747 
4 0.072 0.07306 0.122 0.12338 0.141 0.14312 0.1 11 0.1 1348 
5 0.072 0.07309 0.117 0.12322 0.133 0.14282 0.106 0.11328 

Table 11. Comparison of non-dimensional performance parameters of Szen and Powers23 with present solutions 
for fmite isothermal slider. Truncation used in present solution is M = N = L = 17 

w e m  Qout 

Reference 23 Present Reference 23 Present Reference 23 Present 

Hi = 1-2, BJL = 8 0.00401 0.004005 0.4940 0.494244 0.4224 0.422185 
Hi = 5 , B / L = 8  0.00897 0.008950 0.4698 0.469554 0.1 198 0.1 19294 
H i  = 1.2, B/L = 0.5 0.0636 0.063635 0.4609 0.460862 04494 0449549 
HI = 5, B/L = 0.5 0.0895 0.089533 0.2161 0.21 6105 0.1 602 0.160786 

10'' L 1 

00 

0 0 

1 0 - ( O f  
0 6 10 IS 20 26 30 35 40 46 

m 4 + 2  

Figure 4. Legendre coefficients for pressure solution for - case where HI = B / L  = 2, Pe = 19.1, PrEc = 18.1, 
TR = Ts = 100 "F,i = 2.5.7 = 0, B =  0 , M  =A'= L =20 
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Figure 5.  Legendre coefficients for temperature solustion for same case as Figure 4 

Figure 6 shows results for the non-dimensional pressure at the bearing midplane for three cases: 
isothermal, constant boundary temperatures and constant slider temperature with adiabatic top. The 
results for constant boundary temperatures agree well with those of Ezzat and Rohde.' The figure 
shows that the inclusion of thermal effects has a profound effect on pressure. Pressures are lowest for 
the case of an adiabatic upper boundary, where the temperatures inside the fluid film are highest. 

Figure 6. Pressure along bearing midplane (z = 0) for case where I?, = B/L = 2 ,Pe  = 19.1, 
PrEc = 18.1, TR = Ts = 100 OF, E = 2.5,r = 0, = 0.036, M = N = L = 14. Results for three sets of boundary conditions 
are shown: ~ , isothermal slider, - - ~ , TR = Ts = 100 "F; - .  -, TR = 100 "F, adiabatic stationary surface. 
Density variation is neglected in order to compare with results from Reference 1. The non-zero value for b, however, still 

affects the pressure gradient term in the energy equation 
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0.05 0'063 

0.0 ~ -0.0 

Figure 7. Two-dimensional pressure distribution same case as Figure 6. Results are for TR = 100 O F ,  adiabatic stationary 
surface. Density variation is neglected as discussed in caption to Figure 6 

I 
0.2 0.4 0 .s 0.s 1 

x - 
B 

Figure 8. Temperature contours for same case as Figure 6. Results are for TR = 100 "F, adiabatic stationary surface. Values for 
contour lines increase in increments of 0.1 from 1.1 in lower left to 2.0 in upper right of figure. Density variation is 

neglected as discussed in caption to Figure 6 

Figure 7 shows the two-dimensional pressure distribution for the case with an adiabatic upper 
boundary and Figure 8 shows temperature contours for the same case. The temperature increases 
from the inlet to a maximum at the exit near the upper boundary, similar to the results obtained by 
Hahn and Kettleb~rough'~ for the case where heat transfer into the stationary member was modelled. 

5. CONCLUSIONS 

The thermohydrodynamic lubrication equations have been solved using the pseudospectral method. 
The solutions exhibit the exponential convergence characteristics of spectral methods. Benefits of the 
pseudospectral method over other computational methods include high accuracy with relatively few 
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grid points and a solution which is a function of the independent variables and not just grid point 
values (making postprocessing relatively simple). The formulation presented here serves as a 
foundation for future efforts to apply the pseudospectral method to thermal elastohydrodynamic 
lubrication problems, where high resolution is required. 

APPENDIX 

The analytical solutions for pressure and velocity for the infinitely wide slider bearing are given by 
Pinkus and Stemlicht’’ and are repeated here. The solution for the non-dimensional pressure in terms 
of the non-dimensional x-co-ordinate X = x/B is 

- 6X( 1 - 2) 
= (I?; - l)[I?,/(Rl - 1) - XI2 

The equations for the non-dimensional velocities in terms of the non-dimensional y-co-ordinate v = y/H are 

) v = -- ((7 - j 3 )  +2-#- 1) . 
- R2j? d p  ldp  - 2 -  - 

B d i  
i i=---H yo,- 1)+(1-7), 

2cE 

For flow between infinite parallel plates the energy equation reduces to 
2 k -  d2 T = - p E )  . 

d 3  

The solution to this equation for constant surface temperatures is 

For a constant runner temperature and adiabatic stationary surface the temperature distribution is 

- pu2- T = -y(2 -?) + 1. 
2kTR 
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